Новостной обзор

Ситуация на Донбассе за прошедшие сутки
121
Новороссия сегодня
262
Ситуация на Донбассе за прошедшие сутки
197
Ночная сводка, 18 января
145
Новороссия сегодня
328

Лента новостей

00:48 20-01-2019
Владимир Путин поздравил фестиваль «Золотая Маска» с 25-летием
20:14 19-01-2019
Порабощение человечества. Чем опасно новое приложение Facebook
15:44 19-01-2019
Радикалы будут официальными наблюдателями на выборах президента
12:14 19-01-2019
Завоняло продажностью, или Как «Новая газета» террористов называет «узниками совести»
08:06 19-01-2019
Разведка Франции: США лгали про российское вторжение на Украину
20:54 17-01-2019
США планируют расширить систему ПРО на Аляске
18:14 17-01-2019
Верховная Рада Украины облегчила отъём имущества УПЦ
12:03 17-01-2019
МИД назвал обвинения США в адрес России по ДРСМД фейками
11:51 17-01-2019
НАБУ обязали открыть дела на Гройсмана и Гриневич
08:23 17-01-2019
МИД РФ: США готовятся обвинить Россию в пособничестве ИГ*
02:01 17-01-2019
История Дмитрия Гудкова, или почему будущее «Партии Перемен» в опасности
20:50 16-01-2019
Тереза Мэй провалила Brexit. Британские СМИ вновь взялись за «дело Скрипалей»
18:52 16-01-2019
Смерть не за горами. Как издание «Бумага» пытается истребить российское общество
14:30 16-01-2019
Союзный договор - вечером, нефть - утром
14:14 16-01-2019
МИД РФ: требования США по ракете 9М792 неприемлемы
Все новости

Помешают ли азербайджанские машины оттоку валюты из страны

На пляже Лянкярана обнаружена опасная находка

«Черный январь» навсегда останется в памяти азербайджанского народа

Ересь армянского сегмента Facebook: как бороться с «мини-юбками» в соцсетях

Американцы обозначили свою территорию: Мартиросян о закрытии аккаунтов Sputnik в Facebook

Архив публикаций

«    Январь 2019    »
ПнВтСрЧтПтСбВс
 123456
78910111213
14151617181920
21222324252627
28293031 



» » » Три нерешенные проблемы фундаментальной физики

Три нерешенные проблемы фундаментальной физики

Нобелевскую премию по физике присудили американским ученым Райнеру Вайссу, Кипу Торну и Барри Баришу за открытие гравитационных волн.

Премия совершенно заслуженная. В прошлом году премию за этот результат просто не успели бы вручить, так как о первом прямом детектировании гравитационных волн было объявлено только в феврале, когда нобелевский процесс 2016 года уже был запущен. Но неопределенность насчет 2017 года оставалась, потому что в некоторых случаях награду ждут дольше: например, экспериментаторам, открывшим бозон Хиггса, Нобелевскую премию пока не дали.

Но важно не только открыть гравитационные волны, но продолжить использовать их для изучения гравитации и разных астрофизических объектов. Уже сейчас гравитационные волны — это одно из самых серьезных доказательств существования черных дыр. И в ближайшем будущем с помощью детекторов LIGO и VIRGO мы узнаем много интересного об этих объектах.
 
 
 
Но в фундаментальной физике, в отличие от математики, есть всего лишь три основные нерешенные проблемы, которыми занимаются фактически все ученые из этой области науки, — это проблема космологической постоянной, проблема конфайнмента кварков и проблема квантовой гравитации.

Проблема космологической постоянной
Представьте себе лунку, в которой лежит шарик. Если его пошевелить, он начнет колебаться и без трения будет колебаться вечно — получится классический осциллятор. Но если шарик не трогать, то он будет просто лежать на дне.

Однако квантовая частица — это не шарик, а волна. А потому основное состояние квантового осциллятора имеет ненулевую энергию. Это волна с единственным гребнем внутри лунки. То есть квантовая частица колеблется даже в основном состоянии. Это так называемые нулевые колебания. Они происходят в любой квантовой системе, в том числе в квантовой теории поля.

В квантовой теории поля вакуум — это не пустота. Он состоит из нулевых колебаний. Если нет гравитации, то энергию рассчитывают от полной энергии этих нулевых колебаний. Их как бы отбрасывают. И все частицы в квантовой теории поля — это возбуждение над нулевыми колебаниями.

Однако в присутствии гравитации нулевые колебания отбросить нельзя. Они ведь что-то «весят», то есть искривляют пространство-время. Поэтому возникает проблема.

Теоретически предсказано, что нулевые колебания составляют огромную вакуумную энергию. Однако наблюдения показывают, что вакуумная энергия в нашей Вселенной очень мала. Это то, что сейчас называется темной энергией в космосе. Она приводит к ускоренному расширению Вселенной, так как что-то «весит». Именно в этом и заключается проблема космологической постоянной: с одной стороны, квантовая теория поля предсказывает, что она огромная, а с другой стороны, наблюдаем очень маленькую. Куда девается огромная вакуумная энергия, предсказанная квантовой теорией поля? И какова тогда природа темной энергии?

Проблема конфайнмента кварков
Известно, что ядро состоит из протонов и нейтронов. Они взаимодействуют друг с другом при помощи ядерных сил. Если сталкивать протоны, наращивая энергию, мы увидим рождение огромного многообразия новых частиц — адронов.

Все адроны описываются одним способом: они состоят из кварков. Это наблюдают, рассеивая электрон на протоне при очень высоких энергиях. Оказывается, что при этом электрон рассеивается практически так же, как альфа-частицы на атомах. Последнее было изучено Резерфордом в начале ХХ века: он увидел, что альфа-частица рассеивается на очень концентрированном центре ядра, которое имеет очень маленький размер. Оказывается, что точно так же электрон рассеивается на протоне, но с одной оговоркой: у протона как будто есть три центра с соответствующими зарядами.

Внутри протона действительно находятся три кварка. Но по непонятной причине отдельно эти кварки мы получить не можем, мы всегда их видим только в составе адронов. Теорию кварков мы знаем, и это квантовая хромодинамика, которая описывает кварки и глюоны.
 
Последние переносят взаимодействие между кварками, точно так же как фотоны между электрическими зарядами. Квантовую хромодинамику мы хорошо понимаем при высоких энергиях. Тогда она действительно описывает физику адронов. Но при низких энергиях электрон рассеивается на адронах как на целом. Как переходит одно описание, при помощи практически свободных кварков, к другому — в виде адронов как связанных состояний из кварков? И почему кварки не существуют по отдельности? В этих вопросах и состоит суть проблемы конфайнмента.

Проблема квантовой гравитации
У квантовой теории поля есть проблемы с существованием бесконечных частот. Грубо говоря, поле можно гнуть как угодно, со сколь угодно высокой точностью. Из-за этого возникают так называемые расходимости, а именно: при вычислении различных физических величин в квантовой теории поля мы получаем бесконечные вклады. Во всех ныне разработанных квантовых теориях поля, с которыми мы имеем дело, эти расходимости могут быть устранены переопределением нескольких констант связи, таких как заряды и массы частиц, например.

При этом для того, чтобы устранить похожую проблему при квантовании гравитации, приходится переопределять бесконечное количество констант связи. При повышении энергии теорию нужно усложнять все больше и больше. Это говорит о том, что теория гравитации является применимой только при низких энергиях, а в ее основе должна лежать более фундаментальная (высокоэнергетическая) теория, которую мы пока не знаем.

Большинство из самых обсуждаемых тем в современной физике переходят в сферу философии, и одной из основных таких тем является характер времени. Хотя большинство фундаментальных физических законов не изменяется при изменении времени, существует несколько классов явлений в природе, которые имеют одностороннее направление времени. Поскольку большинство подсистем во вселенной не могут считаться изолированными, эти различные стрелки времени указывают в одном направлении. Возникает вопрос, существует ли одна главная стрелка времени, лежащая в основе всех этих стрелок. Предварительным ответом является «да».
 
Уже Людвиг Больцманн сделал предположение о возможном фундаменте второго закона термодинамики из космологии: это огромный температурный градиент между горячими звездами и холодным пространством, который обеспечивает энтропическую способность, которая необходима для увеличения энтропии.

Исторически сложилось так, что состояния Вселенной в будущем редко представляло научный интерес. Как заметил в 1985 году британский астрофизик Малькольм Лонгэйр: «Будущее нашей Вселенной - прекрасная тема для разговоров после ужина». То, что называется «физическая эсхатология», началось только в 1970-х годах с работы Мартина Риса, Джамала Ислама и некоторых других.
 
То, что сделали эти физики - это экстраполирование нынешнего состояния Вселенной в далекое будущее, предполагая, что известные в настоящее время законы физики останутся неизменными. Предпочтительный сценарий в этом виде исследований обычно начинался с вымирания звезд и их последующего превращения в нейтронные звезды или черные дыры.

В некоторых исследованиях вселенной будущего мира были высказаны предположения о выживании разумной жизни - либо людей, либо их предположительно более интеллектуальных потомков (которые могут быть самовоспроизводящимися роботами, а не существами из плоти и крови)...

АКТУАЛЬНО

Добавьте комментарий

  • winkwinkedsmileam
    belayfeelfellowlaughing
    lollovenorecourse
    requestsadtonguewassat
    cryingwhatbullyangry
Войти через
Кликните на изображение чтобы обновить код, если он неразборчив
Наверх